Home Science & TechScience Spider Silk Is Stronger Than Steel. It Also Assembles Itself.

Spider Silk Is Stronger Than Steel. It Also Assembles Itself.

by admin

Luckily for spiders, millenniums of evolution have made spidroins versatile. The proteins, Dr. Rising explained, are structured like barbells: a long, disorderly string capped on each end by a bolt-like blob. In the silk glands, these barbells are thought to naturally pair up at one end, creating V-shaped duos that slosh around in the dope.

To form the more stable architecture required of solid silk, the spidroins need to link up in chains, using the other ends of the barbells. That seems to happen under the influence of a couple of chemical cues, said Jessica Garb, a spider silk researcher at the University of Massachusetts, Lowell who was not involved in the study. As the spidroin slurry is extruded through a labyrinth of increasingly narrow ducts, the spider cells pump acid into the mixture, making the free ends of the barbells stick together. The journey through these tapering tubes also tugs and squeezes the silk into its final form.

Dr. Malay and his colleagues found that this sculpting and self-assembly could not happen if the liquidy spidroins weren’t dehydrated as they moved through the spider’s anatomy.

Further experiments showed salts made the proteins rapidly distance themselves from the liquid surrounding them, like oil and vinegar in a salad dressing. This allows the spidroins to more easily interact, said Cheryl Hayashi, a spider silk researcher at the American Museum of Natural History who wasn’t involved in the study. Freshly thickened, the stew of spidroins then shapes itself into an increasingly stringy structure.

The silk extrusion pipeline might sound a bit cumbersome. From an engineer’s perspective, though, it’s extraordinarily elegant, said Keiji Numata, a Riken scientist who led the study. Scientists can build superstrong polymers in the lab through brute force, coercing materials to come together in ways they otherwise wouldn’t. But given the right ingredients, under the right conditions, the recipe that is spider silk essentially cooks itself.

Researchers still don’t know enough about this process to fully recreate it. There are also many ways to spin spider silk, which varies between species, and even within the same spider, Dr. Garb said. Although silks might be best known for their roles in web-building, they can also be used to lure mates, protect eggs or even help wayfaring spiders hitch a ride on a passing breeze.

This study focused on the proteins found in dragline silk, which serves as a sort of bungee cord for spiders dangling from their webs or ceilings. “But there’s still a lot more that nature has figured out that we don’t know about,” Dr. Hayashi said.

Source link

Related Articles

Leave a Comment

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Accept Read More